

Luftgütebericht

Jahresbericht 2004

Verleger:
Land Salzburg, vertreten durch
Abteilung 16, Umweltschutz
Referat 16/02, Immissionschutz
Herausgeber: Dipl.Ing. Alexander Kranabetter, Dr. Andreas Falkensteiner
Alle: Postfach 527, 5010 Salzburg

Inhaltsverzeichnis

1	AL	LGEMEINES	2
2	WI	ETTERGESCHEHEN IM JAHR 2004	4
	2.1	WITTERUNGSVERLAUF	5
3	GR	RENZWERTÜBERSCHREITUNGEN	6
	3.1	ÜBERSCHREITUNGEN GEMÄß IG-L:	6
	3.2	ÜBERSCHREITUNGEN GEMÄß OZONGESETZ:	
	3.3	ÜBERSCHREITUNGEN VON RICHTWERTEN:	7
4	BE	SCHREIBUNG DES MESSNETZES	8
	4.1	AUTOMATISCHES LUFTMESSNETZ	8
	4.2	MOBILE MESSUNGEN	
•	4.3	METEOROLOGISCHES MESSNETZ - TEMPIS	10
5	AN	GABEN ZUR QUALITÄTSSICHERUNG	11
	5.1	Luftschadstoffe: Verfügbarkeit in %	11
	5.2	METEOROLOGIE: VERFÜGBARKEIT IN %	
	5.3	MESSGERÄTEBESTÜCKUNG DER MESSSTELLEN	
	5.4	MESSPRINZIPIEN UND NACHWEISGRENZEN	
	5.5	Stabilität des Messsystems	
6	BE	WERTUNG DER LUFTGÜTE IN TAGEN	13
7	MI	ESSERGEBNISSE	14
,	7.1	Schwefeldioxid	15
	7.2	KOHLENMONOXID	
	7.3	STICKSTOFFDIOXID	
	7.4	OZON	
	7.5 7.6	Benzol	
	7.0 7.7	JAHRESMITTELWERTE	
	7.8	FEINSTAUB (PM10)	
	7.9	ELEMENTARER KOHLENSTOFF (RUß)	
8	PA	SSIVSAMMLERMESSUNGEN	20
9	ST	AUBDEPOSITION	22
10		OINDIKATION	
	10.1	SCHWERMETALLUNTERSUCHUNGEN	
	10.2	OZON-BIOMONITORING MIT DEM INDIKATORFÄCHER	
11		RENZ-, ALARM- UND ZIELWERTE	
	11.1	IMMISSIONSSCHUTZGESETZ-LUFT: BGBL Nr. 115/1997 iDGF	
	11.2	Ozongesetz (BGBL Nr. 210/1992) idgF	
12	AN	JHANG - ARKÜRZINGEN	20

1 Allgemeines

Zur Überwachung der Luftqualität im Land Salzburg betreibt das Amt der Salzburger Landesregierung, Abteilung 16 – Umweltschutz ein landesweit ausgerichtetes Messnetz mit 12 fixen Messstationen sowie 2 mobilen Messwagen. Das automatische Luftmessnetz – SALIS – ging im Jahre 1984 in Vollbetrieb.

In Vollzug des gesetzlichen Auftrages im § 5 Abs. 2 des **Salzburger Luftreinhaltegesetzes** sowie des **Immissionsschutzgesetz Luft** (IG-L) und des **Ozongesetz** wurde die Überwachung der Luftqualität im Jahr 2004 mit dem automatischen Messsystem SALIS weitergeführt. Die Messnetzbetreiber sind verpflichtet, die Ergebnisse der Immissionsmessungen in zusammengefasster Form zu veröffentlichen. Das Messkonzept zum Immissionsschutzgesetz Luft, (BGBl.II Nr.263/2004) sieht dazu folgende Mindestinhalte vor:

- 1. Die Jahresmittelwerte der gemäß den Anlagen 1 und 2 IG-L zu messenden Schadstoffe sowie für Stickstoffoxide (NOx) für das abgelaufene Kalenderjahr;
- 2. Angaben über Überschreitungen der in den Anlagen 1, 2, 4 und 5 IG-L sowie in Verordnungen gemäß §3 Abs.3 IG-L genannten Grenz-, Alarm- bzw. Zielwerte, jedenfalls über die Messstellen, die Höhe und die Häufigkeit der Überschreitungen;
- 3. Angaben über Kenngrößen der eingesetzten Messverfahren;
- 4. eine Charakterisierung der Messstellen;
- 5. Berichte über Vorerkundungsmessungen und deren Ergebnisse, insbesondere über dabei festgestellte Überschreitungen der in den Anlagen 1, 2, 4 und 5 IG-L genannten Grenz-, Alarm- und Zielwerte;
- 6. einen Vergleich mit den Jahresmittelwerten der vorangegangenen Kalenderjahre.

Im Folgenden werden nur jene nach dem IG-L genannten Messstellen nach diesen Vorgaben tabellarisch ausgewertet. Die Messergebnisse der mobilen Messungen werden in eigenen Messberichten veröffentlicht.

Projekt AQUELLA

Salzburg nahm im Jahr 2004 mit drei Messstellen (Rudolfsplatz, Lehen und Anthering) am österreichweiten Projekt "AQUELLA" teil. Die Anwendung des Aerosolquellenmodells für Salzburg soll insbesondere der Analyse von Situationen dienen, die zu Überschreitungen der Grenzwerte von Feinstaub (PM10) führten. Durch chemische Analysen von Immissions- als auch Emissionsproben soll eine genauere Zuordnung der Feinstaubquellen ermöglicht werden. Das Quellenmodell, das für die gegenständliche Arbeit herangezogen wird, basiert auf den aktuellsten Arbeiten der führenden Gruppen auf diesem Gebiet (Glen Cass und James Schauer), muss aber für die Anwendung auf ein mitteleuropäisches Stadtaerosol entsprechend modifiziert und adaptiert werden. Der Abschluss dieses umfangreichen Projektes erfolgt Ende 2006.

2 Wettergeschehen im Jahr 2004

Die **Temperaturverhältnisse** entsprachen 2004 wieder mehr den langjährigen Mittelwerten als es in den Jahren davor der Fall war. Zum Teil war es ausgeglichen temperiert, zum Teil waren die Temperaturen um einen halben Grad über den langjährigen Mittelwerten.

Relativ kühl sind der März, der Mai und auch der November verlaufen. Am relativ wärmsten war es im April, im Februar und im Oktober, im Mittel relativ mild verliefen auch noch die Monate August und Dezember.

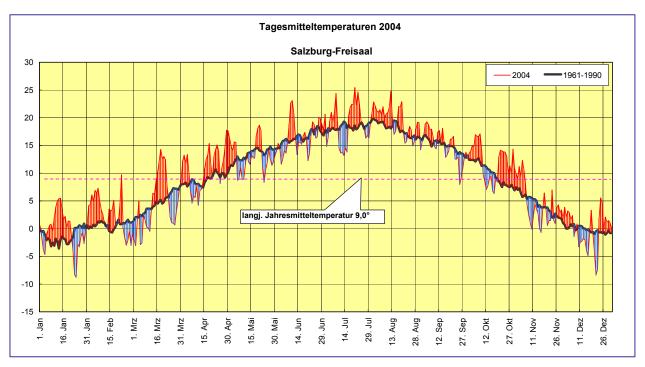


Abbildung 1: Temperaturverlauf im Jahr 2004 im Vergleich zum langjährigen Mittel

Die Niederschlagsmengen waren im Wesentlichen ausgeglichen, zum Teil gab es aber auch überdurchschnittliche Jahressummen, wie etwa in der Landeshauptstadt. Am relativ niederschlagsreichsten verlief der Jänner, in dem zum Teil die doppelten Mengen der langjährigen Niederschlagssummen gefallen sind. Eine relativ niederschlagsreiche Witterung brachte auch im Mai, im Juni und im Oktober im ganzen Land viel Regen. Ausgesprochen trocken sind der Dezember, der April verlaufen, unterdurchschnittliche Niederschlagsmengen gab es auch noch im November.

Überdurchschnittlich **sonnenscheinreich** waren vor allem der März und der Dezember. Nur wenig Sonnenschein gab es vor allem im Jänner und im Februar, aber auch im Mai, Juni und im November wurde mit Sonnenschein gegeizt.

2.1 Witterungsverlauf

Der **Jänner** brachte durchschnittlich temperiertes, sehr niederschlagsreiches Wetter. Durch wechselhaftes Wetter sind austauscharme Hochdrucklagen ausgeblieben.

Im **Februar** gab es durch überwiegende Westwetterlagen in Summe überdurchschnittliches mildes Wetter ohne nennenswerte Einschränkungen des Luftaustausches.

Im **März** bewirkte vom 12. bis 21. des Monats trockene Luft bei stabilem Wetter eine länger anhaltende Einschränkung des Luftaustausches. Ab dem 22. des Monats gab es Winterwetter mit Schneefall, aber guter Durchmischung der Luft.

Im **April** sorgte wechselhaftes Wetter für einen durchwegs guten Luftaustausch. In Summe war es sehr mild und sehr trocken mit reichlich Sonnenschein.

Der **Mai** gestaltete sich kühl und unbeständig mit viel Regen und wenig Sonne. Dementsprechend gab es auch unterdurchschnittliche Schadstoffkonzentrationen.

Ebenso unbeständig und niederschlagsreich verlief der **Juni**. Eine längere, sonnige Hochdruckwetterlage blieb aus und mit ihr auch die überdurchschnittlichen Ozonkonzentrationen.

Der **Juli** war in Summe ein durchschnittlicher Monat mit allerdings überdurchschnittlich vielen Niederschlagstagen. In der ersten Monatshälfte war es sehr wechselhaft, in der zweiten gab es mehr Sonnenschein und auch etwas höhere Ozonkonzentrationen.

Im **August** gab es bis zum 13. des Monats trockenes, warmes Sommerwetter mit den höchsten Ozonkonzentrationen, in der zweiten Monatshälfte gab es wechselhaftes Wetter. In Summe war es relativ warm bei ausgeglichenem Niederschlag und Sonnenschein.

Im **September** war es bis zum Monatsmitte mild und sonnig, dann gab es vor allem im Norden viel Regen.

Warme Witterung aber wenig Sonnenschein wurde im **Oktober** geboten. Die Niederschlagsverhältnisse waren dabei sehr unterschiedlich. Vom 10. bis 20. des Monats gab es den ersten Kaltlufteinbruch, sonst oft Föhnwetter.

Der **November** brachte Schneefall bereits bis in die Niederungen, wobei es auch im Flachgau zwischen dem 7. und 21. zeitweise schneite oder Schneeregen gab. Durch das sehr wechselhafte Wetter gab es keine austauscharmen Perioden.

Sehr trocken und sonnenscheinreich präsentierte sich der **Dezember**. In der ersten Monatshälfte gab es zum Teil stabile Verhältnisse, da es im Flachland aber meist aper war konnten sich die Bodeninversionen tagsüber oft auflösen.

3 Grenzwertüberschreitungen

3.1 Überschreitungen gemäß IG-L:

Das österreichische Immissionsschutzgesetz Luft (IG-L, BGBl. I 115/97) legt für einige Luftschadstoffe Grenzwerte zum Schutz der menschlichen Gesundheit fest. Im Falle der Überschreitung eines Grenzwertes hat der jeweilige Betreiber der Messstellen festzustellen, ob diese Überschreitung auf eine in absehbarer Zeit nicht mehr zu erwartende erhöhte Immission bzw. einen Störfall zurückgeführt werden kann. Ist dies nicht der Fall, so ist gemäß § 8 IG-L eine **Statuserhebung** durchzuführen, innerhalb derer die Ursachen der Grenzwertüberschreitung zu ermitteln sind. Folgende im IG-L festgelegten Grenzwerte wurden im Jahr 2004 im Land Salzburg überschritten:

Stickstoffdioxid Halbstundengrenzwert: (Grenzwert: 200 µg/m³)

Datum	Standort	max. HMW in μg/m³
16.12.2004	Hagerkreuzung	203

Stickstoffdioxid Jahresgrenzwert: (Grenzwert für 2004: 45 μg/m³)

StandortJMW in μg/Rudolfsplatz58A10-Hallein57	m^3
±	
Hallein Hagerkreuzung 53	

Bei allen anderen primären Luftschadstoffen, also auch bei Feinstaub (PM10), sind im Jahr 2004 keine Grenzwertüberschreitungen aufgetreten.

3.2 Überschreitungen gemäß Ozongesetz:

Das österreichische Ozongesetz (BGBl. 210/92) legt zum Schutz der menschlichen Gesundheit vor akut hoher Ozonbelastungen Warnwerte für Ozon fest. Die Alarmschwelle mit 240 $\mu g/m^3$ als MW1 sowie die Ozoninformationsstufe (180 $\mu g/m^3$ als MW1) wurde im Jahr 2004 an keinem Tag überschritten. Somit wurden zum dritten Mal seit 1995 die Ozongrenzwerte an keinem Tag überschritten.

3.3 Überschreitungen von Richtwerten:

Die Jahresmittelwerte 2004 bei *Benzo(a)pyren* liegen zum Teil knapp über dem von der WHO vorgeschlagenem Richtwert von 1 ng/m³. Es wurde allerdings gegenüber dem Jahr 2003 ein deutliches Absinken der Benzo(a)pyren Werte beobachtet was vorwiegend auf die meteorologische Situation zurückzuführen ist.

Benzo(a)pyren: (Richtwert:1 ng/m³ als JMW)

() 1 0 (
Standort	JMW in ng/m ³
Zederhaus	1,36
Hagerkreuzung	1,26
Rudolfsplatz (Werte aufgrund von Aquella noch nicht verfügbar)	-

4 Beschreibung des Messnetzes

4.1 Automatisches Luftmessnetz

Im Bundesland Salzburg werden die Konzentrationen von Luftschadstoffen mit Hilfe des Messsystems SALIS (**SAl**zburger Luftgüte Informations **S**ystem) erfasst. In nachfolgender Tabelle sind die 12 fixen Messstellen des Salzburger Luftmessnetzes angeführt.

	Standort	Lage	Messziel	Höhe
urg	Rudolfsplatz	Verkehrsinsel in einem Kreisverkehr	Stadtzentrum mit starker Verkehrsbelastung	425 m
Salzbı	Lehen	Wenig befahrene Strasse	Dicht verbautes Siedlungsgebiet	427 m
Stadt Salzburg	Mirabellplatz	Großer unverbauter Platz in Nähe der Verkehrsfläche	Stadtzentrum mit durch- schnittlicher Verkehrsbelas- tung	430 m
an	Hagerkreuzung	Verkehrsinsel im Kreuzungsbereich	Verkehrs - und Industriebe- lastung	440 m
Tennengau	Winterstall	Unverbaute Hanglage 200m über Talgrund	Forstspezifische Überwa- chung	650 m
Te	St. Koloman	Höhenrücken im unverbauten Grünland	Hintergrundbelastung	1005 m
Flach- gau	Haunsberg	Höhenrücken im unverbauten Grünland	Hintergrundbelastung und Ferntransport	730 m
Pon-	St. Johann	Im Dachniveau der Bezirks- hauptmannschaft	Dicht verbautes Siedlungsgebiet	620 m
Lungau	Tamsweg	Parkplatz "untere Postgasse"	Siedlungsgebiet mit Ver- kehrsbelastung	1010 m
Lun	Zederhaus	Ortsrand / Feuerwehrhaus	Verkehrsbelastung / Tauern- autobahn	1205 m
Pinzgau	Zell am See	Im Dachniveau des Kranken- hauses	Aufgelockertes Wohngebiet	770 m
Pinz	Sonnblick (UBA)	Sonnblick Observatorium	Globale Hintergrundbelas- tung	3106 m

Abbildung 2: Messstellen des Luftmessnetzes SALIS

4.2 mobile Messungen

Neben der Luftgüteüberwachung mit fixen Messstationen, die gesetzlich in den Messkonzeptverordnungen festgeschrieben sind, wurden mit den 2 **mobilen Messeinheiten** auch im übrigen Landesgebiet Luftgütemessungen durchgeführt. Der Schwerpunkt der mobilen Untersuchungen lag im Jahr 2004 wiederum im Bereich der **Autobahn**, in den Gemeinden **Saalfelden** und **Straßwalchen** sowie im Zuge von diversen Verfahren (Flughafen, andere Betriebe). Die Ergebnisse der mobilen Messungen werden in eigenen Messberichten zusammengefasst.

Im ersten und zweiten Quartal 2004 wurden im Gemeindegebiet von Maria Alm Messungen gemäß der **Kurort-Richtlinie** durchgeführt. Ende Mai wurde der Kurorte Container in Mariapfarr im Lungau aufgestellt.

4.3 Meteorologisches Messnetz - Tempis

Zur Interpretation der Messwerte von Luftschadstoffen und zur Erstellung von Prognosen dient das über Funk gesteuerte *meteorologische Messsystem TEMPIS* (TEMPeratur Informations System). Die Kontrolle dieser meteorologischen Messwerte erfolgt in Zusammenarbeit mit der Regionalstelle Salzburg der Zentralanstalt für Meteorologie und Geodynamik (ZAMG). Soweit für die fachliche Bewertung erforderlich werden auch Daten von Messstationen der ZAMG verwendet. Mit den meteorologischen Daten können in Zusammenarbeit mit der "Wetterdienststelle Salzburg (ZAMG)" Ausbreitungsund Vorhersagemodelle erstellt werden (Luftgüteberichte, Ozonprognosen, etc.).

TEMPIS - Standorte	Seehöhe
Untersberg	1800 m
Gaisbergspitze	1270 m
Zistelalm	1011 m
Judenberg	800 m
Kapuzinerberg	650 m
Rainberg	520 m
Flughafen	430 m
Freisaal	430 m
Winterstall III	893 m
Winterstall II	700 m
Winterstall I	610 m
Hagerkreuzung	440 m
Siggerwiesen	420 m
Zell am See III	1320 m
Zell am See II	1150 m
Zell am See I	950 m

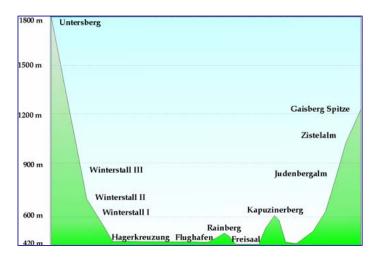


Abbildung 3: Das Messnetz - TEMPIS

5 Angaben zur Qualitätssicherung

5.1 Luftschadstoffe: Verfügbarkeit in %

Zeitraum: 01.01.2004 bis 31.12.2004

Station	SO2	CO	NO2	О3	PM10
Salzburg Rudolfsplatz	96,8	97,2	95,6		98,8
Salzburg Mirabellplatz	99,6	97,4	99,3	99,0	97,6
Salzburg Lehen	98,0		98,9	98,9	98,9
Hallein Autobahn		99,0	99,2		89,5
Hallein Hagerkreuung	97,5	97,3	97,6		99,6
Hallein Winterstall	96,9		96,2	97,1	
St.Koloman				72,8	
Haunsberg	92,2		95,5	95,5	
St. Johann im Pongau				95,9	
Tamsweg	97,6	97,8	97,8	97,6	99,9
Zederhaus		84,1	94,2	86,7	79,4
Zell am See				97,8	

5.2 Meteorologie: Verfügbarkeit in %

Zeitraum: 01.01.2004 bis 31.12.2004

Station	LT	WG	WR36	RF	NS	GS
Bergheim Siggerwiesen	93,5	80,3	95,1	94,2	100,0	_
Flughafen	98,5	98,5	98,2	98,5		
Freisaal	77,8			77,9		
Gaisberg Judenbergalm	98,7			98,7		
Gaisberg Spitze	99,5	87,6	86,5	99,5		
Gaisberg Zistel	93,8			93,8		
Hallein Hagerkreuzung	85,9	82,2	59,1	95,3	92,3	49,2
Hallein Winterstall 1	99,4					
Hallein Winterstall 2	91,5					
Hallein Winterstall 3	81,4					
Haunsberg	99,4	99,4	99,4	99,4		98,9
Kapuzinerberg	94,9	94,9	94,9	94,9		
Rainberg	65,7			65,8		
Salzburg Lehen	99,2	99,2	88,8	99,2		
Salzburg Mirabellplatz	100,0	100,0	99,3	100,0		
Salzburg Rudolfsplatz	99,2	99,2	99,2	99,2		
Tamsweg	99,9	100,0	100,0	100,0		
Zederhaus	79,1	79,0	79,2	79,1		

5.3 Messgerätebestückung der Messstellen

Station	SO2	CO	NO2	O3	PM10	PM10-grav
Salzburg Rudolfsplatz	APSA 360	APMA 360	APNA 360		TEOM	DH-80
Salzburg Mirabellplatz	APSA 360	APMA 360	APNA 360	APOA 360	TEOM	
Salzburg Lehen	APSA 360		APNA 360	APOA 360	TEOM	DH-80
Hallein Autobahn		APMA 360	APNA 360		TEOM	
Hallein Hagerkreuzung	APSA 360	APMA 360	APNA 360		TEOM	DH-80
Hallein Winterstall	APSA 360		APNA 360	APOA 360		
St.Koloman				APOA 360		
Haunsberg	API 100		API 200	API 400		
St. Johann im Pongau				APOA 360		
Tamsweg	APSA 360	APMA 360	APNA 360	APOA 360	TEOM	
Zederhaus		APMA 360	APNA 360	APOA 360	TEOM	DH-80
Zell am See				APOA 360		

5.4 Messprinzipien und Nachweisgrenzen

Geräteserie	Nachweisgrenze lt. Hersteller	Messprinzip
APSA 360	0,5 ppb	UV-Fluoreszenz
API 100	0,4 ppb	UV-Fluoreszenz
APSA 360	O,5 ppb	Chemilumineszenzprinzip
API 400	0,4 ppb	Chemilumineszenzprinzip
APMA 360	0,05 ppm	Infrarot-Absorptionsverfahren
API 300	0,05 ppm	Infrarot-Absorptionsverfahren
APSA 360	0,5 ppb	UV-Absorption
API 400	0,6 ppb	UV-Absorption
TEOM	$3,2 \mu g/m^3$	Tapered Element Oscillating Microbalance
FH-IR	3 μg/m³	Betastrahler

5.5 Stabilität des Messsystems

berechnet aus den periodischen Funktionskontrollen (in %)

Station	SO2	NO2	NO	NOX	CO	O3
Salzburg Rudolfsplatz	2,7		2,6	2,5	3,2	_
Salzburg Mirabellplatz	1,5		2,7	2,8	2,2	2,9
Salzburg Lehen	2,0		2,3	2,2		2,5
Hallein Hagerkreuzung	2,8		2,7	2,4	1,7	
Hallein Autobahn			1,7	1,8	1,0	3,6
Hallein Winterstall	1,9		0,9	1,5		3,4
St.Koloman						2,8
Haunsberg	2,3	2,8		2,7		1,5
St. Johann im Pongau						2,8
Tamsweg	3,2		2,1	2,0	2,8	3,3
Zederhaus			1,8	2,4	1,8	4,2
Zell am See						1,5

6 Bewertung der Luftgüte in Tagen

Zeitraum: 01-Jan-2004 - 31-Dez-2004

SO2 [μg/m³]	1a	1b	2a	2b	3	IG-L
Salzburg Rudolfsplatz	364					
Salzburg Mirabellplatz	366					
Salzburg Lehen	363					
Hallein Hagerkreuzung	363	3				
Hallein Winterstall	363	2				
Haunsberg	351					
Tamsweg	366					
CO [mg/m3]	1a	1b	2a	2b	3	IG-L
Salzburg Rudolfsplatz	364					
Salzburg Mirabellplatz	359					
Hallein Hagerkreuzung	366					
Hallein Autobahn	366					
Zederhaus	319					
Tamsweg	366					
NO2 [μg/m³]	1a	1b	2a	2b	3	IG-L
Salzburg Rudolfsplatz	51	276	33			
Salzburg Mirabellplatz	316	50				
Salzburg Lehen	315	50				
Hallein Hagerkreuzung	113	233	20			1
Hallein Autobahn	68	276	22			
Hallein Winterstall	364					
Haunsberg	362					
Zederhaus	274	74	5			
Tamsweg	356	10				
O3 [μg/m³]	1a	1b	2a	2b	3	IG-L
Salzburg Mirabellplatz	161	162	43			3
Salzburg Lehen	170	147	48			4
St.Koloman	21	152	101			25
Hallein Winterstall	89	199	77			12
Haunsberg	70	190	102			28
St. Johann im Pongau	162	147	51			
Zederhaus	98	171	58			4
Tamsweg	108	202	56			2
Zell am See	126	183	57			2

Luftgütestufen

1a	= Sehr gering belastet
1 <i>b</i>	= Gering belastet
2 <i>a</i>	= Belastet
2b	= Erheblich belastet
3	= Sehr stark belastet

7 Messergebnisse

Zeitraum: 01-Jan-2004 - 31-Dez-2004

SO2 [μg/m³]	Mittel	P 98,0	max HMW	max MW1	max MW3	max TMW
Salzburg Rudolfsplatz	5,2	14,4	43,4	25,0	21,5	15,2
Salzburg Mirabellplatz	3,6	11,5	85,3	84,1	75,1	19,2
Salzburg Lehen	4,1	12,0	92,2	68,5	50,1	17,0
Hallein Hagerkreuzung	5,1	14,1	219,6	145,2	81,7	19,4
Hallein Winterstall	3,1	7,7	178,3	145,2	78,7	12,5
Haunsberg	2,6	6,4	32,5	18,6	14,1	10,7
Tamsweg	3,1	6,7	16,8	12,4	10,4	6,2
CO [mg/m3]	Mittel	P 98,0	max HMW	max MW1	max MW3	max MW8
Salzburg Rudolfsplatz	0,70	1,76	4,26	3,63	2,88	2,33
Salzburg Mirabellplatz	0,47	1,01	8,33	8,20	7,27	3,62
Hallein Hagerkreuzung	0,65	1,80	6,06	4,17	3,24	2,41
Hallein Autobahn	0,40	0,97	4,27	3,93	1,99	1,67
Zederhaus	0,34	0,98	2,41	1,84	1,53	1,30
Tamsweg	0,42	1,48	7,22	4,75	4,73	2,57
NO2 [μg/m³]	Mittel	P 98,0	max HMW	max MW1	max MW3	max TMW
Salzburg Rudolfsplatz	58	119	189	169	157	105
Salzburg Mirabellplatz	34	76	193	167	137	69
Salzburg Lehen	32	78	136	136	116	77
Hallein Hagerkreuzung	53	113	203	182	171	105
Hallein Autobahn	57	120	189	176	161	107
Hallein Winterstall	16	48	96	87	80	47
Haunsberg	9	29	55	54	50	32
Zederhaus	34	92	160	123	117	89
Tamsweg	16	61	117	98	95	60
NOX [ppb]	Mittel	P 98,0	max HMW	max HMW	max HMW	max HMW
Salzburg Rudolfsplatz	90	257	538	538	538	538
Salzburg Mirabellplatz	33	118	394	394	394	394
Salzburg Lehen	33	143	382	382	382	382
Hallein Hagerkreuzung	90	304	741	741	741	741
Hallein Autobahn	94	280	591	591	591	591
Hallein Winterstall	12	54	152	152	152	152
Haunsberg	6	20	46	46	46	46
Zederhaus	48	210	485	485	485	485
Tamsweg	18	82	351	351	351	351
O3 [μg/m³]	Mittel	P 98,0	max HMW	max MW1	max MW3	max MW8
Salzburg Mirabellplatz	42	114	166	163	158	151
Salzburg Lehen	40	116	166	165	162	146
St.Koloman	81	140	166	166	162	154
Hallein Winterstall	62	124	166	165	164	159
Haunsberg	70	136	182	178	169	157
St. Johann im Pongau	39	116	154	151	146	137
Zederhaus	45	114	146	144	139	133
Tamsweg	47	112	144	143	138	132
Zell am See	49	116	162	160	156	144

7.1 Schwefeldioxid

Die Schwefeldioxid-Konzentrationen sind im Jahr 2004 auf dem niedrigen Niveau der Vorjahre geblieben, wobei die Jahresmittelwerte gegenüber 2003 weiterhin leicht abgenommen haben. Der Grenzwert des IG-L zum Schutze des Menschen wurde an keinem Tag überschritten. Die strengeren Richtwerte zum vorsorglichen Vegetationsschutz wurden im Raum Hallein an drei Tagen überschritten, dies entspricht weniger als 1 Prozent aller Tage.

7.2 Kohlenmonoxid

Die Kohlenmonoxid-Konzentrationen wiesen im Jahr 2004 einen gleich bleibenden bis leicht abnehmenden Trend im Jahresmittelwert auf. Auch bei den Maximalkonzentrationen ist ein leichter Rückgang eingetreten. Der Richtwert zum vorsorglichen Gesundheitsschutz wurde im gesamten Landesgebiet wie in den letzten Jahren an allen Messstellen eingehalten. Der strengere Grenzwert für Kur- und Erholungsgebiete wurde an allen Messstellen des Landes zum sechsten Mal seit 1999 eingehalten.

7.3 Stickstoffdioxid

Die Stickstoffdioxid-Konzentrationen lagen im Jahr 2004 bei den Jahresmittelwerten auf einem gleich bleibend hohen Niveau. Hauptverursacher für diesen Schadstoff ist zum überwiegenden Teil der Straßenverkehr. Obwohl jedes Fahrzeug durch die gesetzlichen Abgasnormen (Euro-Klassen) jedes Jahr weniger Schadstoffe produziert, ist das weiterhin steigende Verkehrsaufkommen insbesondere der hohe Anteil an Diesel-Pkws verantwortlich für das hohe Schadstoffniveau. Sowohl der Halbstundengrenzwertes als auch der Jahresgrenzwert wurde an verkehrsnahen Standorten überschritten (siehe Kap. 3).

Der ab dem Jahr 2012 gültige Jahresmittelwert ($30~\mu g/m^3$ als JMW) konnte im Jahr 2003 nur in Tamsweg und an den Hintergrundmessstellen Haunsberg und Hallein Winterstall eingehalten werden. An den höchstbelasteten Standorten wird an etwa 9% der Tage eine Überschreitung des Zielwertes zum vorsorglichen Gesundheitsschutz registriert (Luftgüte 2a). Zieht man den strengeren Grenzwert für Kur- und Erholungsgebiete zur Beurteilung heran (Luftgüte 1b), so zeigt sich, dass an diesen verkehrsbelasteten Messstellen dieser Grenzwert nur noch an 14% der Tage eingehalten wird. Stickstoffdioxid bleibt daher neben PM10 bei den primären Luftschadstoffen noch immer der Schadstoff der, bezogen auf die Grenzwerte, die höchste Belastung aufweist. Da die Stickstoffoxide auch als Vorläufersubstanzen für die Ozonbildung gelten, ist weiter mit aller Kraft eine Reduzierung der Emissionen anzustreben.

7.4 Ozon

Die Jahresmittelwerte der Ozonbelastung zeigten im Vergleich zum Jahr 2003 eine deutliche Abnahme. Aufgrund des unbeständigen Sommers wurde die photochemische Bildung von Ozon unterbunden und es kam zu keiner Ozonepisode mit Überschreitungen der Informationsschwelle. Der *Zielwert* für Ozon nach dem Immissionsschutzgesetz Luft (120 μ g/m³ als MW8) wurde an den städtischen Standorten Lehen und Mirabellplatz an 43 bzw.48 Tagen, an den Hintergrundmessstellen an über 100 Tagen überschritten.


7.5 Benzol

Die Messmethode der aromatische Kohlenwasserstoffe *Benzol, Toluol und Xylole* wurde an den Messstellen Rudolfsplatz und Hagerkreuzung im Jahr 2004 mittels eines Probensammlers (AS3 der Fa. Seibersdorf) weitergeführt. Die Analyse der besaugten Aktivkohleröhrchen erfolgte durch das Landeslabor. Die Messwerte zeigten gegenüber dem Jahr 2003 an beiden Standorten einen leichten Rückgang. Der im Immissionsschutzgesetz Luft vorgesehene Grenzwert zum dauerhaften Schutz der menschlichen Gesundheit von 5 μ g/m³ Benzol als Jahresmittelwert wurde mit 3,0 μ g/m³ am Rudolfsplatz und 3,3 μ g/m³ an der Hagerkreuzung deutlich unterschritten.

7.6 Blei im PM10

Das Immissionsschutzgesetz Luft sieht als Grenzwert zum dauerhaftem Schutz der menschlichen Gesundheit einen Jahresmittelwert von $0.5~\mu g/m^3=500~ng/m^3$ vor. Im Jahr 2004 wurden in 5-tägigen Intervallen Tagesproben mit einem "High-Volume" Staubgerät gesammelt. Diese Proben wurden im Landeslabor analysiert und daraus ein Jahresmittelwert errechnet. Der Jahresmittelwert betrug an den Messstellen Hagerkreuzung $10.0~ng/m^3$ bzw. in Zederhaus $5.7~ng/m^3$. Die Werte liegen um mehr als einen Faktor 50~unter diesem Grenzwert. Der Wert für den Rudolfsplatz liegt aufgrund des Aquella-Projektes noch nicht vor.

7.7 Jahresmittelwerte

7.8 Feinstaub (PM10)

Im Land Salzburg wird PM10, das sind Partikel kleiner 10 μ m, an sieben Standorten gemessen. Im IG-L ist der Grenzwert für PM10 mit 50 μ g/m³ als Tagesmittelwert definiert, der an bis zu 35 Tagen im Jahr (ab 2005 nur noch 30 Tage) überschritten werden darf. Im Jahr 2004 konnte dieser Grenzwert an allen Messstellen eingehalten werden. Ebenso wurde Jahresgrenzwert (40 μ g/m³) an allen Standorten eingehalten. Der höchste Jahresmittelwert trat am verkehrsnahen Standort Rudolfsplatz mit 32 μ g/m³ auf. Die PM10 Konzentrationen lagen im Jahr 2004 deutlich niedriger als im Jahr davor. Das heißt nicht dass die Feinstaubemissionen zurückgegangen sind, sondern die Meteorologie fiel im Jahr 2004 wesentlich günstiger als im Jahr 2003 aus. In den Wintermonaten im Jahr 2004 gab es kaum längere trockene Hochdruckwetterlagen mit starken Inversionen. Auch die Anzahl der Niederschlagstage war deutlich höher als im Jahr 2003. Nähere Informationen zur Feinstaubsituation können in der Statuserhebung PM10 unter http://www.salzburg.gv.at/statuserhebung-pm10-2003.pdf nachgelesen werden.

Messstelle	2001	2002	2003	2004
Salzburg Rudolfsplatz	22	34	62	34
Hallein Hagerkreuzung	16	28	49	26
Hallein A10*	-	-	4	2
Salzburg Mirabellplatz*	23	11	18	8
Salzburg Lehen	8	18	27	14
Tamsweg*	6	13	6	5
Zederhaus	4	3	8	0

^{*)} kontinuierliches Messverfahren (TEOM)

Abbildung 4: Anzahl der Tage mit PM10 Tagesmittelwerten > 50 μg/m³

Messstelle	2001	2002	2003	2004
Salzburg Rudolfsplatz	29	32	37	32
Hallein Hagerkreuzung	26	28	32	28
Hallein A10	-	-	27	20
Salzburg Mirabellplatz	28	19	23	21
Salzburg Lehen	24	22	26	23
Tamsweg	20	21	20	19
Zederhaus	17	18	19	15

Abbildung 5: Entwicklung der Jahresmittelwerte bei PM10

7.9 Elementarer Kohlenstoff (Ruß)

Seit Anfang 2000 wird die PM10-Fraktion an den Messstellen Rudolfsplatz und Zederhaus auf elementaren Kohlenstoff analysiert, der hauptsächlich vom Dieselruß stammt. Im Jahr 2001 wurde das Messprogramm auf die Messstelle Hallein Hagerkreuzung ausgeweitet. Die Probenahme erfolgt mittels des Staubsammlers DIGITEL. Die Bestimmung des Rußes erfolgte nach VDI 2464, Blatt 1.

An der verkehrsnahen innerstädtischen Messstelle Hagerkreuzung betrug der Jahresmittelwert im Jahr 2004 6,9 $\mu g/m^3$. In Zederhaus lag der Jahresmittel bei 3,4 $\mu g/m^3$. Obwohl seit Beginn der Messungen ein leichter Rückgang ersichtlich ist, liegt die Russkonzentration knapp unter dem deutschen Richtwert von 8 $\mu g/m^3$ für EC. Die Werte für den Rudolfsplatz liegen aufgrund des Aquella-Projektes noch nicht vor.

Jahr	Rudolfsplatz	Hagerkreuzung	Zederhaus
2000	10,6		5,0
2001	10,1	8,2	5,2
2002	10,0	6,9	4,4
2003	9,9	7,8	4,1
2004	-	6,9	3,4

Abbildung 6: JMW von EC in µg/m³

Wie aus obiger Tabelle ersichtlich trägt der elementare Kohlenstoff, der hauptsächlich aus Dieselmotoren stammt, mit beinahe einem Drittel zur PM10 Belastung an verkehrsnahen Standorten bei.

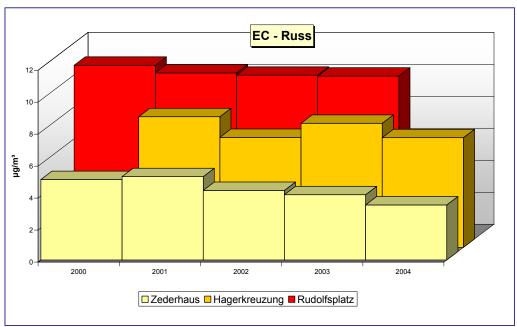


Abbildung 7: Jahresmittelwert elementarer Kohlenstoff

8 Passivsammlermessungen

Im Zeitraum von Oktober 2003 bis Oktober 2004 wurden im Bundesland Salzburg die Immissionsmessungen der Komponenten Stickstoffdioxid (NO₂) und Schwefeldioxid (SO₂) mit Passivsammlern fortgesetzt. Das Messnetz umfasste 39 Messpunkt. Die Messpunkte wurden einerseits flächendeckend, anderseits schwerpunktmäßig in Kurorten und nahe potentieller Emissionsquellen errichtet. In Abbildung 8 ist die Lage aller Messstationen dargestellt, wobei zu berücksichtigen ist, dass in einigen Orten mehrere Messpunkte errichtet wurden. In diesem Fall sind die Ortsnamen unterstrichen und die Anzahl der Messpunkte ist in Klammern gesetzt. Die Passivsammler wurden jeweils 28 Tagen exponiert und lieferten als integrale Messmethode Mittelwerte über diese Periode. Im vorliegenden Messjahr wurden 13 Messperioden durchgeführt.

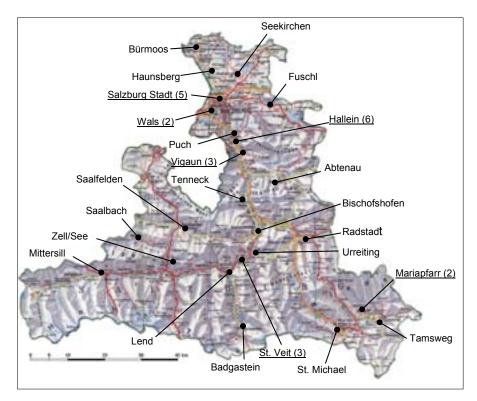


Abbildung 8: Lage der Passivsammler

In Osterreich ist gemäß IG – Luft (BGBL I Nr. 62/2001) ab 1. Jänner 2012 für Stickstoffdioxid ein Jahresimmissionsgrenzwert von 30 μ g/m³ einzuhalten. Für den vorliegenden Untersuchungszeitraum Kalenderjahr 2004 gilt noch eine Toleranzmarge von 15 μ g/m³. Dies entspricht einem Jahresmittelwert von 45 μ g/m³. Der Messpunkt am Rudolfsplatz in der Stadt Salzburg liegt, wie auch schon in den Vorjahren, mit einem Jahresmittelwert von 64 μ g/m³, als einziger über diesem Grenzwert.

Klasse	NO ₂	Beschreibung
	$[\mu g/m^3]$	
I	< 26	Jahresmittelwert geringer als die Beurteilungsschranke
II	26 - 32	Jahresmittelwert zwischen unterer und oberer Beurteilungsschranke
III	32 - 40	Jahresmittelwert größer als die obere Beurteilungsschranke
IV	> 40	Jahresgrenzwert zum vorsorglichen Schutz der menschlichen
		Gesundheit (1999/30/EG) überschritten

 Tabelle 1: Klassierung der NO₂-Immissionsbelastungswerte (Jahresmittelwerte)

0-4		lort	Daniel	JahresMW	WinterMW	
Code	Bezeichnung	Nummer	Bezirk	[µg NO ₂ / m³]	[µg NO ₂ / m³]	
	D. dalfaalata	4000	0-1-1-1-1	64	61	Z _i
S S	Rudolfsplatz Rudolf Biebl Straße	1000 1032	Salzburg Stadt Salzburg Stadt	44	45	Klasse VI
3	Nudoli blebi oti alse	1032	Saizbui y Staut	44	43	≤
S	Flughafen	1001	Salzburg Stadt	37	39	\boldsymbol{x}
SG	Puch	2020	Tennengau	35	39	lass
SG	Wals - Kleßheim	3048	Flachgau	34	36	Klasse III
SG	Vigaun-Ort	2047	Tennengau	34	37	_
			_			
SG	Hallein-Burgfried	2001	Tennengau	30	32	
S	Gnigl	1010	Salzburg Stadt	29	37	⊼
SG	Hallein-Neualm	2018	Tennengau	28	30	Klasse II
SG	Hallein-Rif	2043	Tennengau	27	29	0
SG	Wals - Kirche	3001	Flachgau	26	29	
S	Zell am See	6031	Pinzgau	26	31	
SGu	Freisaal	1015	Salzburg Stadt	25	30	
SGu	Hallein-Gartenau	2010	Tennengau	25	27	
SG	Saalbach	6029	Pinzgau	25	30	
SG	Tenneck	4001	Pongau	23	28	
SGu	Vigaun-Kurzentrum	2035	Tennengau	23	26	
SG	St. Veit - Marktplatz	4068	Pongau	23	28	
SG	Bischofshofen	4008	Pongau	21	28	
SGu	Hallein-Taxach	2003	Tennengau	20	22	
SG	Radstadt	4011	Pongau	20	25	
SGu	Hallein-Gamp	2016	Tennengau	20	22	
SG	Seekirchen	3030	Flachgau	20	23	
SG	St. Michael	5011	Lungau	19	20	
SGu	Lend	6001	Pinzgau	17	23	-
SG	Badgastein	4019	Pongau	17	21	Klasse
SG	Mittersill	6054	-	15	20	se –
SG	Mittersiii Bürmoos	3033	Pinzgau Flachgau	15	20 18	
SG	St. Veit - Ort	4052	Pongau	15	18	
SGu	St. Veit - Kurpark	4052	Pongau	13	15	
SGu	Urreiting	4065	-	13	16	
SGu	Abtenau	2034	Pongau Tennengau	10	13	
SG	Tamsweg	5001	Lungau	9,2	11	
SGu	Vigaun-Riedl	2031	Tennengau	9,2 8,7	14	
SGu	Fuschl	3036	Flachgau	8,0	8,4	
G G	Haunsberg	3055	Flachgau	8,0 8,1	10,6	
SG	Mariapfarr-Schule	5009	Lungau	6,7	8,5	
SGu	Saalfelden	6022	Pinzgau	6,7	8,8	
SGu	Mariapfarr-Örmoos	5003	Lungau	4,7	o,o 5,6	

9 Staubdeposition

Das Immissionsschutzgesetz-Luft weist Grenzwerte für die Staubmenge, sowie für Blei und Cadmium im Staubniederschlag als Jahresmittelwert aus. Die Staubniederschlagsmessung wird nach dem Bergerhoff-Verfahren durchgeführt und entspricht den Anforderungen der Richtlinie 4 und 15 der blauweißen Reihe des Umweltministeriums bzw. der VDI 2119 Blatt 2.

Der Wert von 210 mg/m²*d ist der gesetzliche Grenzwert gemäß IG-L, ab dem nähere Untersuchungen auf die Ursache der Staubbelastung und Maßnahmen durchgeführt werden müssen. Für Kurorte ist in der Kurorterichtlinie (BMUJF, 1997) ein Grenzwert von 165 mg/m²*d vorgeschrieben.

Bei mehr als drei ausgefallenen Messperioden erfolgt lt. ÖNORM 5866 keine Mittelwertbildung aufgrund zu geringer Verfügbarkeit. Der Vollständigkeit halber sind die Messergebnisse dieser Meßstellen kursiv angeführt.

Von den im IG-L gemeldeten 45 Meßstellen konnten bei 43 Messstellen gültige Jahresmittelwerte gebildet werden. Die Ausfälle waren primär durch den vermehrten Anfall von organischem Material zu Beginn und während der Vegetationsperiode bedingt.

Die Grenzwerte der Deposition zum dauerhaften Schutz der menschlichen Gesundheit gemäß IG-Luft wurden im Jahr 2004 an allen Meßstellen mit gültigen Jahresmittelwerten im Land Salzburg eingehalten. Selbst Stationen mit den höchsten Staubbelastungen im Bundesland Salzburg schöpften den Grenzwert bis zu 86 % aus.

Grundsätzlich weist das Land Salzburg im Staubniederschlag nur eine geringe Schwermetallbelastung auf. Die Bleiwerte schöpfen dabei im Maximum nur 1/4 des Grenzwertes aus, bei Cadmium liegt der höchste Wert bei weniger als der Hälfte des Grenzwertes.

Abbildung: Bergerhoff-Messbecher und Passivsammler

Meßstelle Bezeichnung des Standortes	JMW Staub [mg/m²*d]	Grenzwert- ausschöpfung [%]	JMW Cd [µg/m²*d]	JMW Pb [µg/m²*d]	Ausfälle
		11			
6074 Saalfelden Oedt	23,9	23	0,14	4,51	2
6031 Zell am See Nähe Gemeinde	48,1	24	0,17	8,67	0
2055 St. Koloman Kleinhorn	49,7	26	0,29	6,65	3
6054 Mittersill Forsthaus	54,6	27	, -	<i>-</i>	1
6057 Stuhlfelden Alte Salzach	57,6	28	-	-	1
4011 Radstadt Bauhof	58,7	29	0,18	9,82	1
4065 St. Veit Kurpark	59,9	31	, -	-	3
5001 Tamsweg, Krankenhaus	64,6	32	0,18	7,32	3
2043 Hallein Rif, Föhrenweg	67,2		0,24	7,43	3
1001 Salzburg Maxglan	69,7	33	0,19	10,43	0
1010 Salzburg Gnigl	69,8	33	-	-	1
2047 Vigaun Kirche	70,3	33	_	_	0
6077 Stuhlfelden Salzachbrücke Pirtendor	70,9	34	_	_	2
6085 Uttendorf Salzachsiedlung	73,9	35	_	_	2
4001 Tenneck Eisenwerk	74,4	35	0.30	8.57	0
2020 Puch Ortsrand	76,8	37	0,21	7,30	0
5003 Mariapfarr Örmoos	77,9	37	0,23	12,20	0
2034 Abtenau Sonnleiten, Güterweg	80,2	38	-	12,20	3
3001 Wals Kirche	80,2	38	-	_	2
3033 Bürmoos 200m W Kirche	81,2	39	_	_	0
6001 Lend Buchberg	82,4	42	0,29	13,27	0
6029 Saalbach Ortsanfang Rotes Kreuz	87,4	43	0,29	13,21	0
5009 Mariapfarr Ort, Schule	90,0	44	-	<u>-</u>	2
3030 Seekirchen Altes Gemeindeamt	92,2	44	0.43	14.02	2
1015 Salzburg Nonntal	93,1	45	0,34	14,57	0
6055 Stuhlfelden Amersbach	94,5		0,54	-	3
2016 Hallein Gamp	94,3 96,8	46	0,21	9,20	2
6056 Stuhlfelden Flockstation	98,0	47	-	9,20	3
4010 Bischofshofen Friedhofstrasse	103,9	49	-	-	3
4052 St. Veit Schule	103,9	50	0,87	- 15,17	2
3036 Fuschl, 400m SO Kirche, Sportplatz	104,8	50	0,07	15,17	2
2018 Hallein Solvay	104,8	52	-	-	2
3055 Messstation Haunsberg	112,0	53	0,40	- 14,27	0
•	115,5	55		12,42	1
2001 Hallein Burgfried 4068 St. Veit Marktplatz	117,4	56	0,24	12,42	2
5011 St. Michael Wastlwirt	118,2	56	-	-	1
2003 Gartenau Steinbachbauer, Taxach	120,9	58	0.63	20,21	2
	,	62	0,03	20,21	1
2035 Vigaun Kurzentrum 3048 Salzburg Taxham	130,9 137,8	66	0,28	- 13,61	0
	,	69	,	,	1
1032 Salzburg Lehen	144,0	71	0,37	15,66	="
2010 Gartenau St. Leonhard	148,4	71	0,67	20,46	1
2031 Vigaun Riedl	149,7	78		- 27 22	2 0
1000 Salzburg Rudolfsplatz	164,2		0,68	27,33	
4019 Bad Gastein Felsenbad	181,2	86	0.56	7 22	4 4
4067 St. Johann Urreiting	181,3	86	0,56	7,22	4

10 Bioindikation

Mit den verschiedenen Verfahren des **Biomonitorings** können eine Vielzahl von Luftschadstoffen gleichzeitig erfasst werden. Dabei werden externe Einflüsse, das Zusammenwirken mehrerer Schadstoffe und Klimafaktoren mit einbezogen sowie Aussagen über Auswirkungen auf die belebte Umwelt.

10.1Schwermetalluntersuchungen

Für die Erfassung von anorganisch- und organisch chemischen Luftschadstoffen auf die Vegetation wird im Bundesland Salzburg seit den 90er Jahren die Standardisierte Graskultur eingesetzt. Dabei findet die Nutzgrasart Welsches Weidelgras (*Lolium multiforum italicum* Sorte Lema) in einem normierten Verfahren europaweit während der Vegetationsperiode von Mai bis September ihren Einsatz. Die Beprobung der Graskulturen erfolgt ebenso wie bei der Stauberfassung durch den Bergerhoff-Becher alle 28 (+/- 2 Tage).

Die Schadstoffe gelangen dabei über den Luftpfad in die Graskulturen, der Weg über die Wurzeln wird durch Verwendung von Einheitserde mit bekannten Inhaltsstoffen weitestgehend ausgeschlossen. Beim Durchstreichen der Luft wirk das Gras wie eine Bürste, an dessen großer Oberfläche Staub und Schadstoffe anhaften und teilweise auch aufgenommen werden. Am Ende der jeweiligen Exposition wird der Zuwachs geerntet, getrocknet und homogenisiert. Die Pflanzenprobe wird ungewaschen - als Vertreter natürlicher Futterpflanzen - chemisch aufgeschlossen und spurenanalytisch untersucht. Die Immissionswirkungen werden als Stoffgehalte in mg/kg bezogen auf die Trockensubstanz (TS) angegeben.

Ein Projekt "Europaweites Netzwerk zur Beurteilung der Luftqualität mit Bioindikatoren" im Rahmen des Programms <u>LIFE Umwelt</u> 1999 der Europäischen Kommission vergleicht die Ergebnisse der Weidelgraskulturen in insgesamt 8 europäischen Ländern.

Im Bundesland Salzburg wird derzeit ein Dauermeßnetz von zehn Stationen an repräsentativen Standorten betrieben. Die mittleren **Bleiwerte** zeigten dabei in den letzten sieben Jahren eine relativ gleichbleibende Tendenz im Bereich von **0,56 bis 2,80 mg Blei pro kg Trockensubstanz**. Die Cadmiumgehalte schwankten von **0,05** bis **0,79 mg Cadmium pro kg Trockensubstanz**. Die Richtwerte der österreichischen Futtermittelverordnung (40 mg Blei bzw. 1 mg Cadmium pro kg Trockensubstanz) wurden bei weitem unterschritten. Insgesamt zeigt das Weidelgrasverfahren in Salzburg eine niedrige bis sehr niedrige Belastung mit den Schwermetallen Blei und Cadmium.

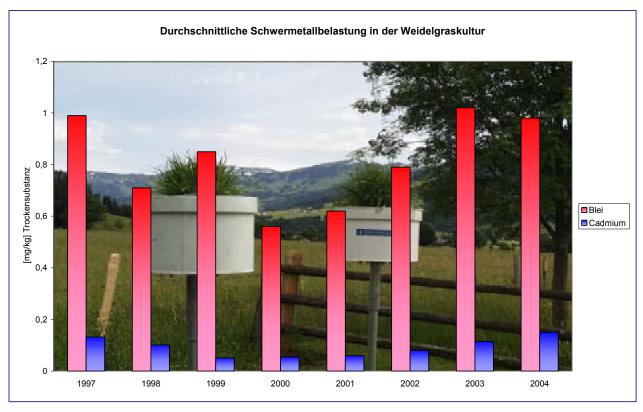


Abbildung 9: Schwermetallbelastung in der Weidelgraskultur

10.2Ozon-Biomonitoring mit dem Indikatorfächer

Luftverunreinigungen üben einen Reiz auf Lebewesen aus, durch den im betroffenen Organismus Reaktionen ausgelöst werden, die zu vielfältigen Veränderungen im Stoffwechselgeschehen und im äußeren Erscheinungsbild führen.

Bioindikatoren reagieren auf den biologisch wirksamen Anteil der Luftverunreinigungen. Durch Photooxidantien wie z. B. Ozon verursachte Schäden werden als Nekrosen bzw. beschleunigte Blattalterung an den Blättern der eingesetzten Bioindikatoren Tabak, Buschbohnen und Klee sichtbar. Als Wirkungsmessgröße werden die makroskopisch erkennbaren Blattschäden herangezogen, Maß ist der prozentuale Anteil der abgestorbenen Blattfläche.

Aus vielen Untersuchungen ist bekannt, dass die verschiedenen Pflanzenarten sehr unterschiedlich auf Ozon reagieren. Eine Klärung der Zusammenhänge zwischen der gemessenen Ozonkonzentration der Luft und den auftretenden Pflanzenschäden ist äußerst schwierig, da weitere Faktoren wie der Wetterverlauf die Empfindlichkeit der

Pflanzen wesentlich beeinflussen. Beispielsweise setzen steigende Temperaturen und sinkende Luftfeuchtigkeit die Ozonempfindlichkeit der Pflanzen herab, da diese zur Reduzierung des Wasserverlustes ihre Spaltöffnungen länger schließen und damit Ozon nicht in die Blätter eindringen kann.

Ozonbelastungssituationen während der Vegetationsperiode können bereits vor dem Auftreten sichtbarer Schäden die Photosyntheseleistung und den Stoffwechsel der Pflanzen so verändern, dass Wachstum und Ertrag deutlich gestört bzw. reduziert werden.

Im Bundesland Salzburg werden seit 1997 mit dem sogen. Photooxidantienständer mit den Indikatorpflanzen Tabak, Buschbohne und Klee in Salzburg-Freisaal, Gaisberg-Zistl und am Haunsberg die Auswirkung von Ozon auf Nutzpflanzen erhoben.

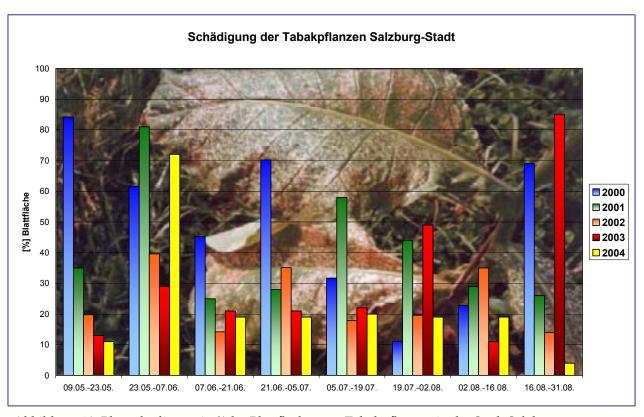


Abbildung 10: Blattschädigung in %der Blattfläche von Tabakpflanzen in der Stadt Salzbug

11 Grenz-, Alarm- und Zielwerte

11.1Immissionsschutzgesetz-Luft: BGBl Nr. 115/1997 idgF

Als **Immissionsgrenzwert** der Konzentration zum dauerhaften Schutz der menschlichen Gesundheit in ganz Österreich gelten die Werte in nachfolgender Tabelle:

Konzentrationswerte in $\mu g/m^3$ (ausgenommen CO: angegeben in mg/m^3)

	(6 -		0.0	· · · · /
Luftschadstoff	HMW	MW8	TMW	JMW
Schwefeldioxid	200 *)		120	
Kohlenmonoxid		10		
Stickstoffdioxid	200			30 **)
Schwebestaub			150	
PM10			50 ***)	40
Blei in PM ₁₀				0,5
Benzol				5

^{*)} Drei Halbsstundenmittelwerte pro Tag bis zu einer Konzentration von 350 µg/m³ gelten nicht als Überschreitung des Halbstundenmittelwertes

Als **Alarmwerte** gelten nachfolgende Werte (in μ g/m³):

Luftschadstoff	MW3
Schwefeldioxid	500
Stickstoffdioxid	400

Als **Zielwert** zum dauerhaften Schutz der menschlichen Gesundheit gelten folgende Werte (in $\mu g/m^3$):

Luftschadstoff	TMW	JMW
PM10	50 *)	20
Stickstoffdioxid	80	

^{*)} maximal 7 Überscheitungen pro Kalenderjahr

^{**)} Der Immissionsgrenzwert ist ab 1.1.2012 einzuhalten

^{***)} pro Kalenderjahr ist folgende Zahl von Überschreitungen zulässig: bis 2004 35; von 2005 bis 2009: 30; ab 2010:25.

Als **Immissionsgrenzwert** der **Deposition** zum dauerhaften Schutz der menschlichen Gesundheit in ganz Österreich gelten die Werte in nachfolgender Tabelle:

Luftschadstoff	Depositionswerte in mg/(m2 * d) als Jahresmittelwerte
Staubniederschlag	210
Blei im Staubniederschlag	0,100
Cadmium im Staubniederschlag	0,002

11.2Ozongesetz (BGBL Nr. 210/1992) idgF

Grenzwerte in μg/m³	MW1
Informationsschwelle	180
Alarmstufe	240

Als Zielwert für den Schutz der menschlichen Gesundheit gilt folgender Wert:

Zielwert in μg/m³	MW8
Ozon	120 *)

^{*)} gültig ab 2010; darf im Mittel über 3 Jahre nicht öfter als 35-mal überschritten werden.

12 Anhang: Abkürzungen

	Abkürzungen	Dimensionen	
HMW	Halbstundenmittelwert	mg/m3	Milligramm pro Kubikmeter
MW(x)	(x)Stundenmittelwert	μg/m3	Mikrogramm pro Kubikmeter, 1 mg/m3 = $1000 \mu g/m^3$)
TMW	Tagesmittelwert	ppb	parts per billion
JMW	Jahresmittelwert	ppm	parts per million
Max.	Maximaler Wert im Auswertezeitraum	Grad C	Temperaturgrade in Celsius
P98 / P97,5	98 Perzentil bzw. 97,5 Perzentil	m/s	Meter pro Sekunde
Verf. % HMW	Datenverfügbarkeit in Prozent	mm	Millimeter

Messkomponenten	Kurzbezeichnungen	Messkomponenten	Kurzbezeichnungen
Schwefeldioxid	SO2	Stickstoffmonoxid	NO
Ozon	O3	Stickstoffoxide	NOx (Summe NO + NO2)
Feinstaub	PM10	Windrichtung	WR36
Kohlenmonoxid	CO	Windgeschwindigkeit	WG
Stickstoffdioxid	NO2	Lufttemperatur	LT

Luftgütebewertung in Anlehnung an die Österr. Akademie d. Wissenschaften (ÖAW)

1a	= Sehr gering belastet Vegetationsschutz eingehalten, Kur- und Erholungsgebiet
1b	= Gering belastet Vorsorgewert zum Schutz des Menschen eingehalten
2a	= Belastet Vorsorgewerte zum Schutz des Menschen überschritten
2b	= Erheblich belastet Vorwarnstufe / Informationsstufe erreicht
3	= Sehr stark belastet Alarmstufe erreicht